High Resolution Digitally Trimmable Resistor

Presented by: Alek Benson, Clark Reimers, Pierce Nablo, Oluwatosin Oyenekan

Overview

• Intro

- Initial Research
- Proposed Approaches
- Testing
- Evaluation & Comparisons
- Conclusion

Intro - Project Statement

Our goal is to design a high resolution digitally trimmable resistor. It should be capable of adjusting its resistance value by $\pm 1\%$, and should be re-trimmable infinitely many times. The trim steps should be binary weighted.

Intro - Requirements

The requirements of this project are the following:

- Resistance value can be adjusted to ±1% via binary weighting
- Designed in TSMC .18µ process
- Size should be comparable to current resistor solutions
- Temperature dependencies minimized

Intro - Assumptions/Limitations

Assumptions

- Process variations exist
- Inherent gradient effects exist
- Operating environment is controlled
- Power consumption should be minimized
- Area should be minimized

Limitations

- Non-ideal switch technology
- Software capabilities
- Simulation errors
- TSMC process available to ISU

Intro - Timeline

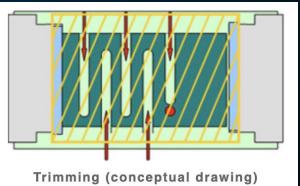
	Q1		Q2	Q2		Q3			Q4			
	January	February	March	April	May	June	July	August	September	October	November	December
Administrative						231 da	iys					1/20 - 12/7
Research				161 days			2/3 -			9/14		
Ideate			(21 days	3/2 - 3	/30						
Development										74 days		8/24 - 12/7
Presentation				16 da	ys 4/10 - 4	4/26					26 d	11/9 -12/14

Intro - Project Milestones

- Understand TCR
- Make reference design
- Simulate and Evaluate Reference Designs
- Scale-up Proposed Design
- Simulate and Evaluate Proposed Designs
- Repeat
- Select Final Design

Overview

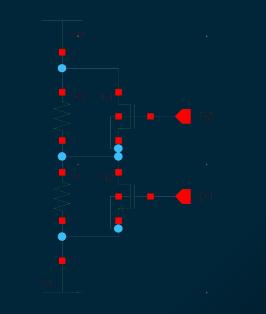
- Intro
- Initial Research
- Proposed Approaches
- Testing
- Evaluation & Comparisons
- Conclusion



Initial Research - Trimming Methods

Currently trimming resistors in IC is done with various methods.

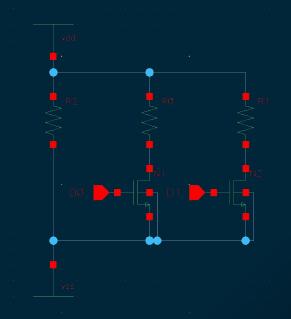
- Laser Trimming
- Anti-Fuse Trim
- Magnetic Tunnel Junction Element
- On-Chip Heater
- Digital Trimming
 - Series Resistor Structure
 - Parallel Resistor Structure


Laser Trim:

https://www.susumu.co.jp/usa/tech/know_how_05.php

Initial Research - Series Design

Series Structure:



Shortcomings:

- All current is driven through the mosfets.
- Highly temperature dependent
- Resistor and mosfets have different temperature coefficients which don't cancel out in voltage divider equation.

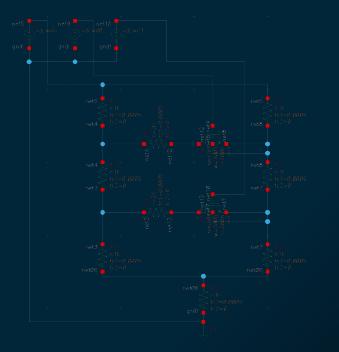
Initial Research - Parallel Designs

Parallel Design:

Shortcomings:

- Resistor area grows dramatically
- Area of total circuit is to large for practical applications.

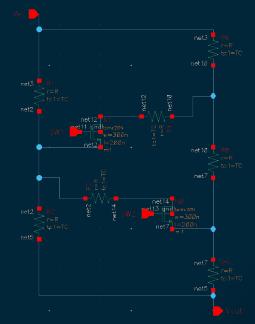
Overview


• Intro

- Initial Research
- Proposed Approaches
- Testing
- Evaluation & Comparisons
- Conclusion

Proposed Approaches - Ladder Design

Ladder Structure:



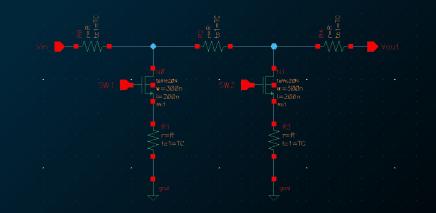
Theory:

- Minimize current flowing through the switches to prevent large TCR fluctuations
- Difficult to calibrate a binary trim.

Proposed Approaches - Truss Designs

Truss Structure:

Theory:


- Adapted from the ladder structure
- Keeps the idea of driving current through resistors only.
- Reconfigures how the trimming rungs are organized.

Proposed Approaches - Voltage Divider

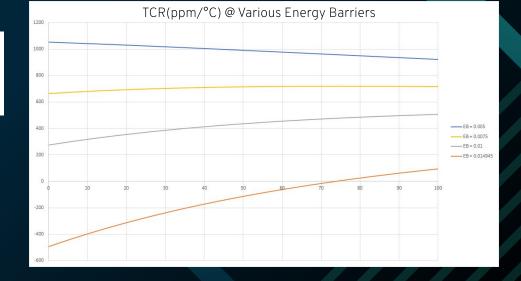
Theory:

- Modified from the previous structure after poor performance
- Divided voltage in half every stage
- Naturally a binary trim

Voltage Divider Structure:

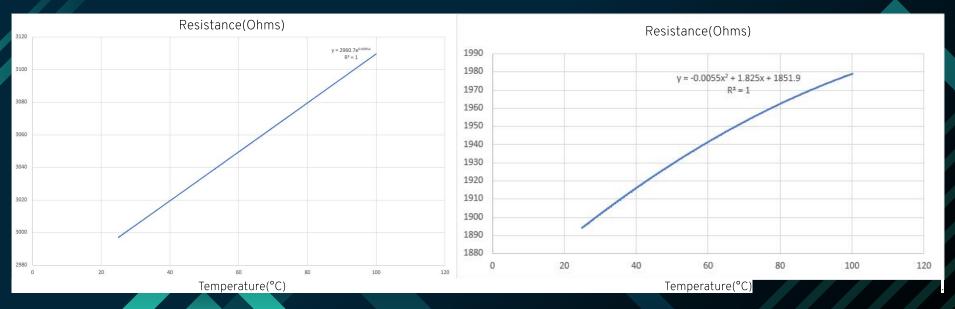
Overview

• Intro

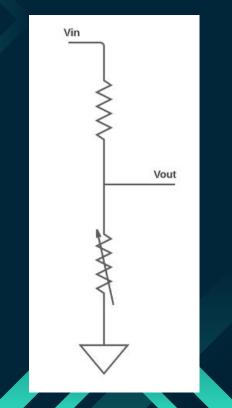

- Initial Research
- Proposed Approaches
- Testing
- Evaluation & Comparisons
- Conclusion

Testing - Resistor TCR

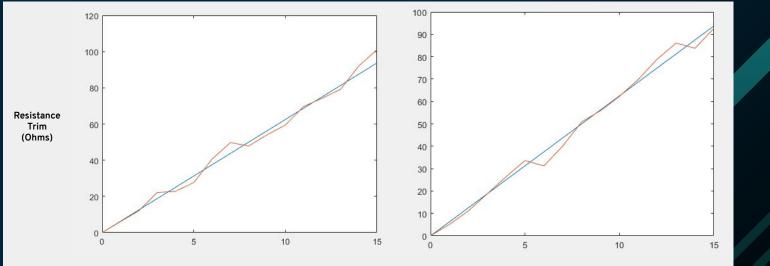
Energy Barrier is a function of grain size and carrier concentration.


$$\mathbf{TCR} = \left(\frac{1}{\mathbf{R}}\frac{\mathbf{dR}}{\mathbf{dT}}\right)_{\text{op. temp}} \quad \bullet 10^{6} \, \text{ppm/}^{\circ}\mathbf{C}$$

Testing - Series Structure


Switches - OFF

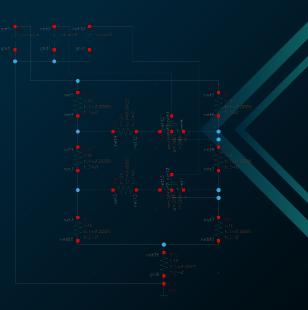
Switches - ON


Calculated using resistor components with a TCR of 500 ppm/°C

Testing - Temperature Coefficient of Voltage

- Effectively a ratio of resistor TCRs
- Abbreviated as TCV
- Ideal value of 0

Testing - Trimming Stability

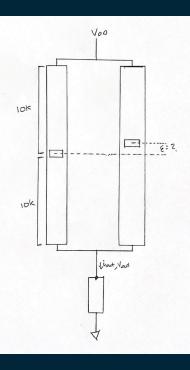


Bit Combination from 0000 to 1111

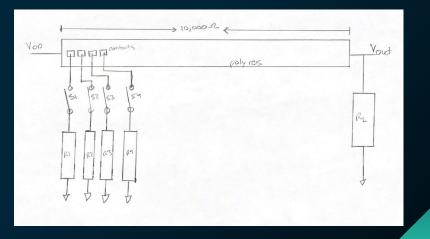
Testing - Overview

Resistor Configuration								Sin	Calculate			
Run		Left Res	Switch	n size	Trim Res	Right Res		311	Calculate			
	Level	(Ohms)	W(n)	L (n)	(Ohms)	(Ohms)	State	Temp	V		Resistance	Trim
2	1					9,000	OFF OFF	27.00	0.499999999990	0.00005000000	10,000.00	0.00
	2	10,000	30,000	200	4,100	(A)	OFF OFF	28.00	0.49999999989	0.00004992511	10,015.00	
	3					2,000	ON OFF	27.00	0.50063564996	0.00005006356	9,974.61	25.39
1	4	10,000	30,000	200	4,100		ON OFF	28.00	0.50063526020	0.00004998854	9,989.58	
198	5					9,000	OFF ON	27.00	0.50126428966	0.00005012643	9,949.56	50.44
	6						OFF ON	28.00	0.50126281038	0.00005005120	9,964.54	
	7						ON ON	27.00	0.50188352344	0.00005018835	9,924.94	75.06
	8						ON ON	28.00	0.50188172228	0.00005011300	9,939.90	

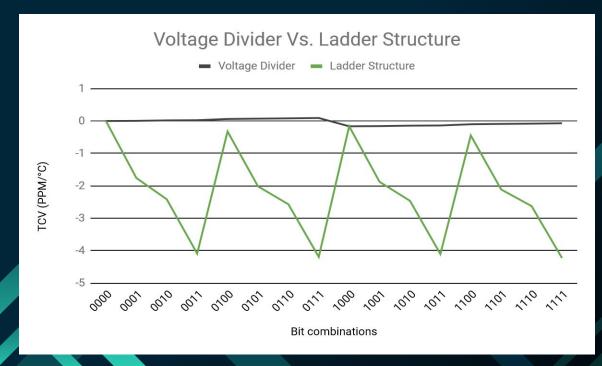
P	erformance		Total Trin	n Res	Equivalent Switch Resistance. (all gates on)			
TCR	TCV	% Trim	Switch Res	Total	Width (n)	Vs (v)	Length (n)	
1500.0001	0.0000	0.00%	116		0		or concerned a	
			4.76	4,104.76	300	0.751237	1615.716853	
1501.5614	-0.7785	0.25%			0			
			4.76	4,104.76	300	0.730814	1624.519166	
1505.9261	-2.9511	0.50%			0			
					0			
1507.2156	-3.5888	0.75%			0			
					0			



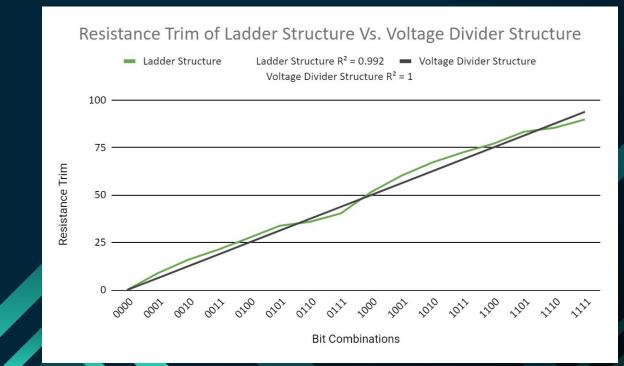
Overview


- Intro
- Initial Research
- Proposed Approaches
- Testing
- Evaluation & Comparisons
- Conclusion

Code



A big challenge with both the Ladder Structure and the Voltage Divider is calibrating the trimming. To do this we made some matlab code to perform the system of equations calculations


Evaluations and Comparisons

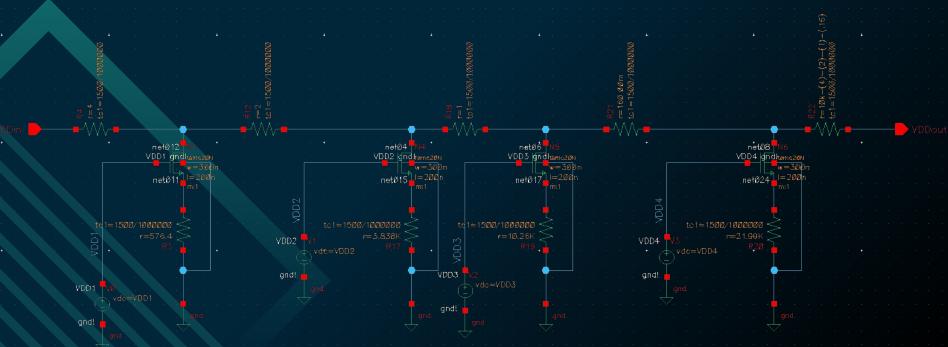
Temperature Comparisons

Evaluations and Comparisons

Trimming Precision and Accuracy

Overview

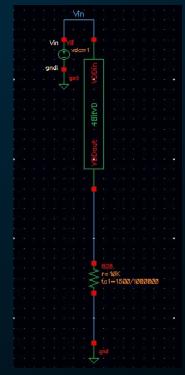
• Intro


- Initial Research
- Proposed Approaches
- Testing
- Evaluation & Comparisons
- Conclusion

Conclusion - Final Design

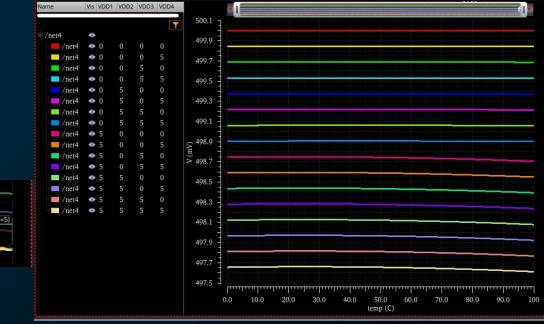
The voltage divider is our final design because it satisfies the requirements of the project.

Voltage Divider Structure:



Conclusion - Demo

TCV values at each bit combo


Bit combos	TCV				
0000	<u>-0.000002776</u>				
0001	0.005190602				
0010	0.019135387				
<u>0011</u>	0.024775990				
0100	0.062854667				
<u>0101</u>	0.073474643				
0110	0.081841379				
<u>0111</u>	0.092922495				
1000	<u>-0.162639859</u>				
<u>1001</u>	<u>-0.157448289</u>				
<u>1010</u>	<u>-0.143553029</u>				
<u>1011</u>	<u>-0.137916192</u>				
<u>1100</u>	<u>-0.100015642</u>				
<u>1101</u>	<u>-0.089324100</u>				
<u>1110</u>	<u>-0.081079560</u>				
<u>1111</u>	<u>-0.069921784</u>				

Voltage Output Testbench

Conclusion - Demo

Uniform spacing as expected is observed with only minor drops in voltage of a 100 °C range. This test shows that the voltage divider circuit is a good alternative to the ladder structure.

Conclusion - Lessons learned & Future work

Lessons Learned:

- We should have used equation solvers like MATLAB at the beginning to help save time
- Make sure the circuits are built correctly before making conclusions on the simulation results.

Future work:

- Higher-Bit level resistor structures (8-bit)
- Using different process technology/switch components
- Work on reducing TCV even further

This concludes our senior design presentation

A big thanks to professor Geiger for all of his advising throughout senior design.

Thanks for listening!

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**.

Please keep this slide for attribution.

Conclusion - Questions

