High Resolution Digitally Trimmable Resistor

Team Members: Alek Benson, Clark Reimers, Oluwatosin Oyenekan, Pierce Nablo Advisor: Dr. Geiger

Intended Users and Uses:

Intended users: Circuit designers or researchers.

Intended uses: Trimmable resistors are used when final adjustments of circuits are required. They can also be used in initial adjustments into next stages.

Problem:

The goal of this project is to solve the need to incrementally adjust a voltage for input to a circuit device such as an amplifier. This requires very fine adjustment increments while maintaining precision under various temperature ranges. There is also a need to be able to integrate this on an IC in order to be small and modular.

<u>Solution:</u>

This requires a high resolution solution that will require a digitally controlled resistor structure. This design will be re-trimmable and capable of trimming at small increments up to a total of 1%. This design will be optimized to reduce the total resistance size as well as the temperature dependencies of the device.

Design Requirements:

Functional requirements

- Temperature dependencies should be minimized. A TCV of 0 is ideal
- Equivalent resistance can be trimmed to ±1%
- Binary weighted structure. First bit sets 1/2% trim, second sets 1/4% trim, third sets 1/8% trim, and fourth sets 1/16% trim
 Non-functional requirements
- Area of design should be comparable to current market solutions
 Operating environment
- Not intended for rugged, wet, or extreme environments

Design approach

Research methods of trimmable resistors

- Research ways to minimize TCV
- Research how to get high resolution binary trim

Brainstorm design schematics to simulate

- Compare to reference design (Area, TCR, TCV)
- Make improvements where possible
- Come up with new ideas as needed and improve until goals are met

	<u>Designs:</u>	
Ladder Structure	<u>Truss Structure</u>	<u>Voltage Divider</u>

<u>Testing Environment:</u>

<u>Spectre</u> ADE-L DC Temperature Sweep ADE-L Parametric Analysis	<u>MATLAB</u> Ladder Structure Trimming Calculator Voltage Divider Trimming Calculator		
This graph indicates that the voltage divider is perfectly binary weighted (within a certain resolution). The ladder structure on the other hand, is not as good with an R squared value of .992	The ideal TCV value for a design is 0. In this graph, it is observable that the voltage divider structure is much closer to 0 than the ladder structure is at any given bit combination. It can also be seen that the more bits that are active, the worse the TCV is.	<u>Comparisons</u>	
Resistance Trim of Ladder Structure Vs. Voltage Divider Structure	Voltage Divider Vs. Ladder Structure	 TCV is the percent change in voltage with 	
 Ladder Structure Ladder Structure R² = 0.992 Voltage Divider Structure Voltage Divider Structure R² = 1 	- Voltage Divider - Ladder Structure	respect to (w.r.t) changes in temperature	
100		(measured in PPM/°C)	
75		 Voltage divider is better w.r.t TCV 	
E Ti	() W -2	 Voltage divider is better w.r.t area 	

